The Undecidability of the Infinite Ribbon Problem: Implications for Computing by Self-Assembly

نویسندگان

  • Leonard M. Adleman
  • Jarkko Kari
  • Lila Kari
  • Dustin Reishus
  • Petr Sosík
چکیده

Self-assembly, the process by which objects autonomously come together to form complex structures, is omnipresent in the physical world. Recent experiments in self-assembly demonstrate its potential for the parallel creation of a large number of nanostructures, including possibly computers. A systematic study of self-assembly as a mathematical process has been initiated by L. Adleman and E. Winfree. The individual components are modeled as square tiles on the infinite two-dimensional plane. Each side of a tile is covered by a specific “glue,” and two adjacent tiles will stick iff they have matching glues on their abutting edges. Tiles that stick to each other may form various two-dimensional “structures” such as squares and rectangles, or may cover the entire plane. In this paper we focus on a special type of structure, called a ribbon: a non-self-crossing rectilinear sequence of tiles on the plane, in which successive tiles are adjacent along an edge and abutting edges of consecutive tiles have matching glues. We prove that it is undecidable whether an arbitrary finite set of tiles with glues (infinite supply of each tile type available) can be used to assemble an infinite ribbon. While the problem can be proved undecidable using existing techniques if the ribbon is required to start with a given “seed” tile, our result settles the “unseeded” case, an open problem formerly known as the “unlimited infinite snake problem.” The proof is based on a construction, due to R. Robinson, of a special set of tiles that allow only aperiodic tilings of the plane. This construction is used to create a special set of directed tiles (tiles with arrows painted on the top) with the “strong plane-filling property”—a variation of the “plane-filling property” previously defined by J. Kari. A construction of “sandwich” tiles is then used in conjunction with this special tile set, to reduce the well-known undecidable tiling problem to the problem of the existence of an infinite directed zipper (a special kind of ribbon). A “motif” construction is then introduced that allows one tile system to simulate another by using geometry to represent glues. Using motifs, the infinite directed zipper problem is reduced to the infinite ribbon problem, proving the latter undecidable. An immediate consequence of our result is the undecidability of the existence of arbitrarily large structures self-assembled using tiles from a given tile set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Decidability of Self-Assembly of Infinite Ribbons

Self-assembly, the process by which objects autonomously come together to form complex structures, is omnipresent in the physical world. A systematic study of self-assembly as a mathematical process has been initiated. The individual components are modelled as square tiles on the infinite two-dimensional plane. Each side of a tile is covered by a specific “glue”, and two adjacent tiles will sti...

متن کامل

مدلی جدید برای حل مساله موازنه خط مونتاژ هزینه‌گرا

 In this research, a new model for cost-oriented assembly line balancing problem has been presented that consists of labour and equipment cost. The approach of this model for these costs is coincided with real condition of assembly lines and yield possibility of using common equipment amoung tasks. The objective function and constrains of this model has been shown by mathematical relations and ...

متن کامل

Self-referential basis of undecidable dynamics: from The Liar Paradox and The Halting Problem to The Edge of Chaos

In this paper we explore several fundamental relations between formal systems, algorithms, and dynamical systems, focussing on the roles of undecidability, universality, diagonalization, and self-reference in each of these computational frameworks. Some of these interconnections are well-known, while some are clarified in this study as a result of a fine-grained comparison between recursive for...

متن کامل

Study of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium

Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...

متن کامل

Fuzzy multi-objective assembly line balancing problem: Fuzzy mathematical programming approach

Design of assembly line is done in order to more coordinate a collection of some consecutive work stations for the aim of obtaining more productivity from the work stations and workers. The stations are arranged in a way to have a continuous and constant material flow. In this paper a multi-objective formulation for assembly line balancing is introduced. As a solution approach a two-step approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2009